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Stacking faults in close-packed structures are not always distributed randomly. When they 
occur preferentially at certain layer spacings. In such cases the classical theories of X-ray scat- 
tering from randomly faulted close-packed structures break down and a probability distribution 
of faults has to be assumed to compute the diffraction effects. This probability distribution 
faults has to be assumed to compute the diffraction effects. This probability distribution 
depends on the mechanism of the transformation in the material being studied. By recording 
the diffuse intensity distribution along reciprocal lattice rows perpendicular to the faults 
obtained from a partially transformed crystal it is possible to determine the nature of the faults 
involved and derive information about the mechanism of the transformation. The application of 
this method to investigate the mechanism of 2H -,  3C and 2H ~ 6H transformations in ZnS, 
ZnxCdl_xS and ZnxMnl_xS is discussed. A three parameter model assuming different fault 
probabilities for deformation faulting at larger separations (c~), at three-layer separations (/~) 
and at two-layer separations (7) has been developed, to compute theoretically the diffraction 
effects from the transforming crystals and explain the experimentally observed distribution of 
diffuse intensity in reciprocal space. 

1. In troduc t ion  
Several materials with a close-packed structure, such 
as like ZnS, SiC and cobalt are known to undergo 
solid state structural transformations from one 
ordered structure to another through the insertion of  
stacking faults. The nature of the stacking faults 
involved in the transformation and their distribution 
can be determined by arresting the transformation at 
an intermediate stage and studying the disordered 
partially transformed crystal by X-ray diffraction 
techniques. 

2. Stacking faults in close-packed 
structures 

In a close-packed structure the stacking rule is 
occasionally broken resulting in the occurrence of a 
stacking fault. Such a stacking fault does not alter the 
number of nearest neighbours and often even their 
separation, causing very little change in the binding 
energy of  the structure. In such cases the stacking 
faults may occur in sufficient concentration to 
produce visible diffraction effects on X-ray diffraction 
photographs. The different kinds of stacking faults 
that can occur are: 

(i) Growth faults: if a stacking fault results by the 
incorrect addition of a single layer during the layer by 
layer growth of a crystal and the subsequent layers 
follow the stacking rule it is known as a growth fault. 
The growth fault configurations in the h c p (2H) and 
f cc  (3C) structures are depicted as: 

Growth fault in a 2H structure: A B A B C B C B . . .  

Growth (or twin) fault in a 3C structure: 

ABCABCBACBA . . . 

The position of  the fault plane is indicated by 
underlining. 

(ii) Deformation faults: if two parts of the crystal 
slip past each other along the basal plane through 
a partial slip vector + Si where Si denotes Sj = 
(a/3)[1 TOO], $2 = (a/3)[0 1 TO] and $3 = (a/3)[10 1 0], 
then it produces a deformation fault. Such a fault 
configuration is depicted below for the 2H and 3C 
structures. 

Deformation fault in a 2H structure: 

A B A B I C A C A C A . . .  

Deformation fault in a 3C structure: 

ABCABC[BCABCA . . . 

The position of the fault plane is indicated by the 
vertical line. 

(iii) Layer displacement fault: a layer displacement 
fault can nucleate in the original structure by the 
aggregation of vacancies at high temperatures in a 
small region of a close-packed layer and then expand 
by the diffusion of neighbouring atoms in accordance 
with the mechanism suggested by Pandey et  al. [1]. 
Such a fault configuration displaces only one or two 
layers in the structure leavirrg all the other layers 
unaffected, as depicted below: 

Perfect 2H structure " A B A B ~ B A B  . . . .  
I I 

Faulted 2H structure ABABICIBAB 

Perfect 3C structure "ABCAB~-~BC . . . .  
I I 

Faulted 3C structure ABCAB[ACIBC 

where the displaced layers are indicated by the 
rectangles. 
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(iv) Extrinsic faults: such faults occur by the insertion 
or removal of a whole layer in a close-packed structure. 
They are faults of much higher energy and therefore 
uncommon. 

Extrinsic fault in a 2H structure: A B A B C A B . . .  

Extrinsic fault in a 3C structure: A B C A B A C A B C . . .  

o r  

ABCABCI BCABCA 

The extra layer is indicated by underlining and the 
missing layer by a vertical bar. 

3. The distribution of stacking faults 
Close-packed structures of  different inorganic com- 
pounds generally exist in certain small period basic 
structures which occur more frequently. The basic 
structures for ZnS are 2H and 3C whereas for SiC they 
are 6H, 15R and 4H. Similarly the basic structures 
for Cdl2 are 2H and 4H. Stacking faults in these 
materials can occur either randomly, non-randomly 
or periodically. Accordingly three different situations 
arise. 

(i) When the faults are distributed randomly, the 
probability of  faulting can be assumed to be the same 
on every layer and the classical theories of X-ray 
scattering from one-dimensionally disordered struc- 
tures, summarized by Warren [2] and Sebastian and 
Krishna [3] can be applied. Such situations arise when 
the stacking faults occur as accidents and their con- 
centration is low. 

(ii) When the faults are distributed non-randomly, 
the probability of faulting cannot be assumed to be the 
same on every layer and the classical theories of X-ray 
scattering from one-dimensionally disordered struc- 
tures break down. One has then to introduce prob- 
ability distribution for the faults and compute the 
diffraction effects. Such a situation arises when the 
faults occur in the course of a phase transformation 
and therefore have preferred sites for their occurrence. 
The probability distribution of the faults is related to 
the mechanism of the transformation and thus 
provides information about it. This is discussed in 
greater detail in the next section. 

(iii) When the faults occur periodically they give rise 
to a long-period polytype structure. The periodic 
occurrence may be either due to a screw dislocation 
mechanism [4] or in metallic systems due to the lower- 
ing of the energy of  the conduction electrons. In the 
latter case the long-period structures are called super- 
lattices and usually occur at specific compositions in 
an alloy. In this case one obtains a completely new 
structure with well-defined sharp X-ray reflections, 
corresponding to the well-defined reciprocal lattice of  
the polytype or superlattice structure. The diffraction 
effects from such ordered long-period structures have 
been discussed in detail by Verma and Krishna [4]. 

4. X-ray diffraction from a randomly 
faulted close-packed structure 

The presence of  random stacking faults in a crystal 
destroys the periodicity parallel to the stacking axis 
which renders one of the three Laue conditions invalid. 

This gives rise to diffuse streaks depending on the 
amount of disorder present in the crystal. The first 
theoretical treatments of X-ray scattering from such 
disordered structures were reported by Wilson [5] and 
Hendricks and Teller [6]. Since then several workers 
[2, 7-14] have developed the theory of X-ray diffrac- 
tion from crystals containing a random distribution of  
stacking faults. The theory predicts changes in inte- 
grated intensity, peak positions and half widths of 
reflections for which H - K ¢ 0 mod 3. By measur- 
ing these experimentally, it is possible to evaluate the 
degree of faulting in the crystals. A considerable 
amount of the experimental work has been done using 
powder samples to determine the nature of stacking 
faults and the fault concentration by studying line 
widths and peak shifts [23]. The information so 
obtained gives values that are averaged over all the 
grains in the powder sample. Such a method is 
obviously unsuitable for the study of  polytypic 
materials where different grains could possess dif- 
ferent crystal structures. Single crystal studies provide 
much more reliable information about the disorder in 
individual crystals, but very few such studies have 
been reported in the literature. 

Recently, we have made a systematic analysis of the 
nature of stacking faults in 2H and 3C ZnS crystals 
[15-17]. As-grown and annealed disordered 2H crys- 
tals are found to contain a random distribution of  
deformation faults whereas in disorderd 3C crystals a 
random distribution of twin (growth) faults are present. 

5. Diffraction effects from crystals of 
ZnS, ZnxCdl_xS and ZnxMn I xS 
undergoing phase transformation 

The 2H (wurtzite) modification of ZnS is metastable 
at temperatures below 1020°C and undergoes solid 
state transformation to the 3C phase [15-20]. Many 
of the crystals are found [15] to show weak X-ray 
reflections near the 6H positions. The 2H ~ 3C trans- 
formation in ZnS crystals commences with the insertion 
of deformation faults [15, 19]. A non-random insertion 
of  deformation faults at two-layer separations can 
effect the 2H ~ 3C transformation as depicted below: 

Initial structure (2H) • AB[ABABAB . . . .  

CA CACA . . . .  

BC B.C . . . .  

AB . . . .  

Resulting structure (3C) " ABCABCAB . . . .  

It is found [21-24] that solid solutions of ZnS with a 
little CdS or MnS undergo a 2 H - 6 H  transformation 
on annealing. Such a transformation can be effected 
by a non-random insertion of deformation faults at 
three-layer separations as shown below: 

Initial structure (2H) • ABIAB.ABABAB, _ 

C A C ~ C A C A  . . . .  

B A B ~ B  . . . .  

CA . . . .  

Resulting structure (6H) • ABCACBABCA . . . .  
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X-ray diffractograms recorded from partially trans- 
formed crystals reveal a marked enhancement of 
intensity at the positions corresponding to 6H reflec- 
tions during the 2H ~ 3C transformation and con- 
versely an intensity enhancement at the 3C positions 
during the 2H --> 6H transformation. Figs 1 and 2 
show the single crystal diffractometer records of 
intensity against L in reciprocal space for 2H ZnS 
crystals at different stages of  transformation to the 3C 
structure, and Fig. 3 shows that of a 2H Zn0.94Cd0.068 J(m,02) = 

crystal partially transformed to a 6H structure. I t  J(m,12) = 

is evident from the figures that the faults have a 
higher probability of  nucleating at two- and three- J~,.,0s) = 
layer separations. In order to explain the observed J<m,13) = 
intensity distribution we have therefore developed a 
general three-parameter model for the computation of  
diffraction effects. The model makes the following 
assumptions: 

(i) the crystal is infinite in size and free of 
distortions; 

(ii) the scattering power for all the layers is the same; 
(iii) there is no change in the layer spacings at the 

faults; 
(iv) the faults extend right across the crystal; 
(v) the effect of  absorption, thermal diffuse scatter- 

ing and scattering from point defects is negligible; 
(vi) the probability for faults to nucleate at random 

at large separations i s .  which is different from the 
probability fl for the faults to occur at three-layer 
separations and the probability 7 for them to occur at 
two-layer separations. The probability for faults to 
occur on successive layers is negligible, where 

Employing the notations used earlier [1, 24, 25] the p = 
fault probability trees for such a three-parameter 
model of the transformation can be written as follows: 

A1 2 ~ Bo,~ ,  
v B~ c~<.,~-Y ~\A; 

Y\A~ B12 
(rn-1) th layer mth layer (m-l) th layer mth layer 

c 3 

B~ I C~o Y B~ 

B, 

A° C~ A 
ct Y C~1 

,,A 1 
Co A, ~ Co ~ [1-1s 

C3 I ~ " ~  ~ B O  
1 ~ A ~  

P 

Following Sebastian and Krishna [24, 25] we obtain 
the following difference equations from the probability 
trees. 

J(m,O) = (1 - -  ")S(m 1,1)602 -[- (1 - -  / /)J(m_l,13)go 2 

(1) 

2016 

J(m,01 ) = 

J(m,i = 

J(m,l) = (1 - .)J(m_l,O)(.Ol + ( 1  - fl) J(m_l.o3)C°, 
(2) 

"J(m_l , l ) (Di  -'F- //J(rn_l,13)fD, + 7J(m_l,12)(D 1 

(3) 

"S(m- l ,0>~2  + flS(m 1,03)~2 + 7J(m 1,02) °)2 

(4)  

J(~_,,,,)co2 (5) 

J~m_,,o,)Col (6) 

(1 - -  7) J(m-1,12) 092 (7)  

(1 - 7)J(m_,.o2)Co , (8) 

On trying a solution of the form J(m,j) = Cj ' ,  e m ~ 0 

and eliminating the various Cs we get the following 
characteristic equation: 

O 8 + [7 - (1 - .)2]e6 + [.(1 -- fl)(1 -- 7) 

+ 7 2 - 7(1 - .)2]e4 + [fl2(2 7 - 1) 

+ 2 .7 (1  - / ~ )  - ¢ - 72(. - / ~ ) 2 ] e 2  

+ (1 - 7 ) 2 ( . -  fl)2 = 0 (9) 

Following Holloway [26] and Sebastian and Krishna 
[21, 25] the expression for the diffracted intensity can 
be written as 

I = f 2 C [ ( ~ + Q ) + c o m p l e x c o n j u g a t e  I (10) 

Q = 

T 1 e 7i~L -+- T 2 e 6inL -k- ( T  3 + a 6 T 1 ) e  5i'lL 

-k- ( T  4 -+- a6T2)  e 4inL -]- (Z5 + a6T3 q- anT1)  e 3i=L 

+ (T6 + a6 T4 + a4T2)e 2'~L 

-F ( T  7 q- a6Z  5 -1- a 4 Z  3 + a 2 T l ) e  i"c --  ao 

ao + a2 e 2inL + a4 e 4inL -F a 6 e 6inL --]- e 8ircL 

f2 = f2. + f2 + 2fZnfS C O S -  

C is a scale factor, 

a 6 = 

a 4 = 

0 2 = 

a 0 = 

T, - 

T 2 =  

T3 = 

7~4 = 

3gL 

4 

7 -- (1 -- .)2 

. ( 1  - / / ) ( 1  - 7) + 7 2 - 7(1 - ~,)2 

fl2(27 - 1) + 2.7(1 - fl) - 7211 + ( .  - / 3 )  2 ] 

(1 - 7 )2( .  - / ~ ) 2  

1 
2 

(1  - I~ - 7 + / / 7  - . 7 ) / x  

(--1 + /3 + ? - //7 + 4ctT)/2x 

(1 -- 3 .  - - / / - -  7 + 3 . / / +  2.7 + / / 7  --  3 " f l 7 ) / x  

T5 = ( - 1  + 3 . +  f l + 7 -  / / 7 + " ?  + 3 " 2 -  6 . / /  

- 6.72 + 6.//7 - 3.2fl - 3.27 + 3ofl/ /7)/2x 

T6 = (1 - 6 . -  f l - 7  + 9a// + 5.7 +/37 + 6"2 

- 3 .  3 - 12.//7 - -  6 . 2 / /  - 6 . 2 ]  ) + 3"7 z 

+ 3.sy + 6.2fl7 + 3 . 3 f l  + 3 . f l 7  2 - 3 .3 f l y ) / x  
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Figure 1 Single crystal diffractometer plot of intensity against L along the 10. L reciprocal lattice row for a disordered 2H crystal obtained 
by annealing a perfect 2H ZnS crystal• 

o 

> -  

I -  

Z 
I.d 
I - -  
Z 

I I I I 
10.2 3C IO.T 3C I0.0 
(2H) (2 H) 

L 

3C I 0 .1  3 C  1 0 . 2  
(2H) (2H)  

Figure 2 Single crystal diffractometer plot of intensity against L along the 10. L reciprocal lattice row for a nearly transformed disordered 
twinned 3C ZnS crystal with intensity enhancement near the 6H positions. The vertical lines indicate the 6H positions. 
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Figure 3 Single crystal diffractometer plot of intensity against L along the 10.L reciprocal lattice row for a 2H Zn0.gaCd006S crystal partially 
transformed to the 6H obtained by annealing a 2H crystal at  800°C for 1 h. The vertical lines indicate the 6H positions. 

201 7 



e 

>- 

Z 
Ld 

Z 

. ) 

', , - / 

I0.0 
(2H) 

(3C) I0.1 (3C) 10.2 
(2H) (2H) 

L 

(~ = 0.1 

I~ : 0 . 8  
9 =0.8 

:0 .6  

:0 ,4  

: 0-2 

Figure 4 Calculated variation of the diffracted intensity 
along the 10.L reciprocal lattice row for a 2H crystal 
undergoing transformation by the three-parameter model 
for c~ = 0.1; fl = 0.8 and y = 0.2, 0.4, 0.6 and 0.8. The 
calculated profiles are shifted vertically for clarity. The 
vertical lines indicate the 6H positions. 

7"7 = ( - 1  + 6c~ + fl + ? - 3 c d -  /~7 - 12cq~ 

- 2c~ 7 + 18c~fl7 + 3c~fl 2 - 9cdy + 3c~2fl 

- 9~72 + 6cq~72 + 3 ~  3 + 3~ 4 + 12~2y 2 

- 3~3fl=? + 3~fl272 + 3~=f127)/2x 

x = 1 + 3 c ( -  / ~ - 7  + f l y -  ~y. 

Using Equa t ion  10 the diffracted intensity a long the 
10. L reciprocal  lattice row was compu ted  for values of  
L varying in steps of  0.01 using var ious  values of  ~,/~ 
and 7- Fig. 4 shows the calculated distr ibution along 
the 10.L reciprocal  lattice row as compu ted  for 

= 0.1, fi = 0.8 and ? varying f rom 0.2 to 0.8. Fig. 5 
shows the calculated intensity distr ibution as obta ined  
for  ~ = 0.1, 7 = 0.4 and /~  varying f rom 0.2 to 0.9. 

6. Comparison with experiment 
The above  theoretical  model  for the calculat ion of 
diffracted intensity enables us to calculate the intensity 
distribution: 

(i) for the 2H --* 3C t rans fo rmat ion  by preferential  
fault ing at two-layer  separat ions if we put/Y = ~; 

(ii) for  the 2H --* 6H t r ans fo rmat ion  by preferential  
faulting at three-layer separat ions  if we put  7 = 0, 
and 

(iii) for  the general case, o f  t r ans fo rmat ion  where 
neither fl nor  7 is zero. 

In  compar ing  the calculated profiles with those 
observed experimental ly,  two possibilities need to be 
considered. 

(a) The  2H ~ 3C and 2H ~ 6H t rans format ions  
may  occur separately in different regions of  the crystal. 
In  this case the resulting intensity profile would be an 
addi t ion of  the intensity profiles for  the 2H --* 3C and 
2H --, 6H t rans format ions  in a suitable propor t ion .  

(b) The  t r ans fo rmat ion  occurs homogeneous ly  in all 
regions of  the crystal  with a preferential  fault  p rob-  
ability/~ at  three-layer separat ions and ? at two-layer  
separations• In  this case the resultant  intensity would 
be that  given by the th ree-paramete r  model  and it 
should be possible to determine the values o f  e, fl and 
7 for  each recorded profile. 

Analysis  o f  the experimental ly  observed diffraction 
effects obta ined by us favour  possibili ty (a) as against  
possibili ty (b). Figs 6 and 7 show the calculated 
var ia t ion o f  the diffracted intensity for  a mixture  of  
the 2H --* 6H and 2H ~ 3C t rans format ions  with 

= 0.04 and e = 0.3, respectively. A compar i son  o f  
the experimental ly  recorded intensity profiles in differ- 
ent stages of  the 2 H - 3 C  and 2 H - 6 H  t rans format ions  
with those compu ted  theoretically using the three- 
pa rame te r  model  with different values o f  e, fl and 
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' ~'- 29 = 0 . 4  

F .... " "" .... F 

10'1 3C 10.2 

(2H) (2H) 

L 

Figure 5 Calculated variation of  
the diffracted intensity along the 
10.L reciprocal lattice row for a 
2H crystal undergoing transfor- 
mation by the three-parameter 
model for ~ = 0.1, ~ = 0.4 and 
fl = 0.2, 0.4, 0.6, 0.8 and 0.9. The 
calculated profiles are shifted ver- 
tically for clarity. 
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I L o(:= 0.04 
8 0 %  2 H - 6 H  J9'=0.6 

- ~ ~ 2 0 %  2H-25C ~1 =0.4 

j ~  o(:=0.04 
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(5C) 10.2 

(2H) 
L 

Figure 6 Calcula ted  var ia t ion  o f  the diffracted intensity for a mix ture  of  2 H  --, 6H and  2H -~ 3C t r ans fo rma t ion  for c~ = 0,04. (a) 50% 

2H --, 3C with 7 = 0.9 and  50% 2H --, 6H with fl = 0.9. (b) 80% 2H ~ 6H with/~ = 0.6 and  20% 2 H  ~ 3C with 7 = 0.4. 

shows that the model is not applicable as such to these 
crystals. During the 2H-3C transformation the 
theory predicts the shift of the intensity of those 6H 
reflections which do not a coincide with the cubic 
peaks (L = - 3 ,  + z - +4)  towards the nearby 3C posi- 
tions. Experimentally recorded profiles do not show 
any shift of these reflections. The peak broadening for 
these crystals is also not in good agreement with the 
predicted values. The experimental profiles (Figs 1 to 
3) are found to be in reasonable agreement with those 
computed theoretically for a suitable mixture of the 
2H--* 3C and 2 H - *  6H transformations. As the 
transformation behaviour is composition dependent 
this may be due to slight variations of the composition 
(impurity content) in the different regions of the same 
single crystal. It is known that the addition of small 
quantities of CdS or MnS to ZnS stabilizes the 6H 
phase; consequently, a different proportion of trans- 
formation to the 3C and 6H structure in different 

regions of the same single crystal is possible in the 
solid solution phases though it is somewhat surprising 
in ZnS itself. Singer [27] also observed the presence of 
such independently diffracting domains in ZnS crystals; 
the independent scattering from such domains being 
additive. The enhancement of the diffracted intensity 
near the 6H positions was also observed by Fleet [28] 
in mineral sphalerite (3C) ZnS crystals which were 
believed to have formed from the wurtzite phase. 
Steinberger [29] and Mardix [30] have observed the 
presence of a large number of regions varying in width 
and each representing a particular polytype structure. 
It should be noted that the periodic slip mechanism 
proposed for the 2H-3C transformation in ZnS 
proposed by Mardix and Steinberger [31] and Daniels 
[32] can operate only in those crystals which have an 
axial screw dislocation. A small value of ~ and a large 
value of/7 represents this situation at an intermediate 
state. 

oC=0-5 
9 0 %  2H-3C i5 =0.9 
10% 2H-6H ,/9=0-9 

6=0-3 
8,5% 2H-3C t$ =0-9 
15% 2H-6H 29=0-8 

10.0 (3C) IO.I (3C) 10.2 
(2H) (2H) (2H) L 

Figure 7 Calcula ted  var ia t ion  o f  the diffracted intensity for a mix ture  of  2H ~ 6H an d  2H --, 3C t r a n s f o r m a t i o n  for c~ = 0.3. (a) 85% 

2 H  ~ 3C with o/ = 0.9 and  15% 2H ~ 6 H  wi th /3  = 0.8. (b) 9 0 %  2H -~ 3C with 7 = 0.9 and  10% 2H ~ 6H wi th /3  = 0.9. 
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7. Conclusions 
The 2H ~ 3C transformation in ZnS occurs through 
the non-random nucleation of deformation faults 
occurring preferentially at two-layer separations. The 
addition of a little CdS or MnS, to form solid solutions 
of the type ZnxCdl_xS and ZnxMn~_xS (x >/ 0.9) 
causes the phase transformation to occur through a 
6H phase. The 2H --* 6H transformation occurs by 
the non-random nucleation of deformation faults 
occurring preferentially at three-layer separations. 
Several crystals of the solid solutions show a mixture 
of both transformations on their X-ray diffraction 
photographs in different proportions. Comparison of 
the observed diffraction effects with those computed 
theoretically using a three-parameter probability dis- 
tribution of faults, confirms that the 2H ~ 3C and 
2H ~ 6H transformations take place simultaneously 
in different regions of the same single crystal. 
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